FSAL200 Wide Bandwidth Quad 2：1 Analog Multiplexer／Demultiplexer Switch

Features

■ Typical 6Ω switch connection between two ports
－Minimal propagation delay through the switch
■ Low I CC
－Zero bounce in flow－through mode
－Control inputs compatible with TTL level
■ Rail－to－rail signal handling
■ Low insertion loss
■ Route communications signals include：
－10／100 Ethernet
－100VG－AnyLAN
－ATM25
－SONET OCI 51．8 Mbps
－USB1．1
－T1／E1
－Token Ring 4／16 Mbps

Description

The Fairchild Switch FSAL200 is a rail－to－rail quad 2：1 high－speed CMOS TTL－compatible analog multiplexer／ demultiplexer switch．The low On Resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise．
When $\overline{\mathrm{OE}}$ is LOW，the select pin connects the A Port to the selected B Port output．When $\overline{\mathrm{OE}}$ is HIGH，the switch is OPEN and a high－impedance state exists between the two ports．

Ordering Information

Part Number	Package Number	Pb－Free	Package	Packing Method
FSAL200QSC	MQA16	Yes	16－Lead Quarter Size Outline Package（QSOP）， JEDEC MO－137，0．150＂Wide	
FSAL200MTC	MTC16	Yes	16－Lead Thin Shrink Small Outline Package （TSSOP），JEDEC MO－153，4．4mm Wide	

This device is also available in tape and reel．To order，append X to the part number．

Analog Symbol

Connection Diagram

Truth Table

\mathbf{S}	$\overline{\mathbf{O E}}$	Function
X	HIGH	Disconnect
LOW	LOW	A=B1
HIGH	LOW	A=B2

Pin Descriptions

Pin Name	Function
$\overline{\mathrm{OE}}$	Switch Enable
S	Select Input
A, B1, B2	Data Port

Absolute Maximum Ratings

The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table defines the conditions for actual device operation.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	-0.5	7.0	V
$\mathrm{~V}_{\mathrm{S}}$	DC Switch Voltage ${ }^{(1)}$	-0.5	0.5	V
$\mathrm{~V}_{\mathrm{IN}}$	DC Input Voltage ${ }^{(1)}$	-0.5	7.0	V
I_{IK}	DC Input Diode Current $@\left(\mathrm{I}_{\mathrm{IK}}\right) \mathrm{V}_{\mathrm{IN}}<0 \mathrm{~V}$		-50	mA
$\mathrm{I}_{\mathrm{OUT}}$	DC Output Current		120	mA
$\mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{GND}}$	DC V_{CC} or Ground Current		± 100	mA
$\mathrm{~T}_{\text {STG }}$	Storage Temperature Range	-65	+150	${ }^{\circ} \mathrm{C}$
P_{D}	Power Dissipation @ $\pm 85^{\circ} \mathrm{C}$	0.5	W	
$\mathrm{~T}_{\mathrm{A}}$	Ambient Temperature with Power Applied	-40	85	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions ${ }^{(2)}$

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage Operating	3.0	5.5	V
$\mathrm{~V}_{\mathrm{IN}}$	Control Input Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IN}	Switch Input Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{V}_{\mathrm{OUT}}$	Output Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}, \mathrm{t}_{\mathrm{f}}}$	Input RIse and Fall Time			
	Control Input Vcc $=2.3 \mathrm{~V}-3.6 \mathrm{~V}$	0	10	$\mathrm{~ns} / \mathrm{V}$
	Control Input Vcc $=4.5 \mathrm{~V}-5.5 \mathrm{~V}$	0	5	$\mathrm{~ns} / \mathrm{V}$
O_{JA}	Thermal Resistance		350	${ }^{\circ} \mathrm{C} / \mathrm{W}$

1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
2. Control input must be held HIGH or LOW; it must not float.

DC Electrical Characteristics

3. Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B Ports).
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}}$ maximum $-\mathrm{R}_{\mathrm{ON}}$ minimum measured at identical V_{CC}, temperature, and voltage levels.
5. Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.

AC Electrical Characteristics

Symbol	Parameter	Conditions	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Figure
				Min.	Typ.	Max.		
t_{ON}	Turn-On Time S to Output	$\mathrm{VB}_{\mathrm{n}}=3 \mathrm{~V}$	4.5-5.5		10	20	ns	Figure 1
		$\mathrm{VB}_{\mathrm{n}}=1.5 \mathrm{~V}$	3.0-3.6		28	40	ns	Figure 2
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time S to Output	$\mathrm{VB}_{\mathrm{n}}=3 \mathrm{~V}$	4.5-5.5		5	10	ns	Figure 1
		$\mathrm{VB}_{\mathrm{n}}=1.5 \mathrm{~V}$	3.0-3.6		4	20	ns	Figure 2
Q	Charge Injection ${ }^{(6)}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}} \\ & =0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.3 \end{aligned}$		$\begin{aligned} & 7 \\ & 3 \end{aligned}$		pC	Figure 3
OIRR	Off Isolation ${ }^{(7)}$	$\begin{aligned} & R_{L}=100 \Omega \\ & \mathrm{f}=30 \mathrm{MHz} \end{aligned}$	4.5-5.5		-55		dB	Figure 4
		$\begin{aligned} & R_{L}=50 \Omega \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	3.0-3.6		-75		dB	Figure 4
Xtalk	Crosstalk	$\begin{aligned} & R_{L}=100 \Omega \\ & f=30 \mathrm{MHz} \end{aligned}$	4.5-5.5		-70		dB	Figure 5
		$\begin{aligned} & R_{L}=50 \Omega \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	3.0-3.6		-75		dB	Figure 5
BW	-3dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	4.5-5.5		137		MHz	Figure 8
		$\mathrm{R}_{\mathrm{L}}=50 \Omega$	3.0-3.6		110		MHz	Figure 8
D	$\Delta R_{\mathrm{ON} / R \mathrm{~L}} \text { Distortion }^{(6)}$	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	4.5-5.5		2		\%	
			3.0-3.6		3			

6. Guaranteed by design.
7. Off Isolation $=20 \log _{10}\left[\mathrm{~V}_{\mathrm{A}} / \mathrm{V}_{\mathrm{Bn}}\right]$.

Capacitance ${ }^{(8)}$

Symbol	Parameter	Conditions	Typ.	Max.	Units.	Figure
C_{IN}	Control Pin Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	2.3		pF	
$\mathrm{C}_{\mathrm{IO}-\mathrm{B}}$	B Port Off Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and 3.0 V	8		pF	Figure 6
	A Port Off Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and 3.0 V	13		pF	Figure 7
C_{ON}	Channel On Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and 3.0 V	15		pF	Figure 7

8. $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$. Capacitance is characterized, but not tested in production.

AC Loading and Waveforms

Figure 1. AC Waveforms

Figure 2. $\mathrm{t}_{\mathrm{on}}, \mathrm{t}_{\text {off }}$ Loading

Figure 3. Charge Injection Test

Figure 4. Off Isolation

Crosstalk

Figure 5. Crosstalk

Figure 6. Channel Off Capacitance

Physical Dimensions

Dimensions are in inches (millimeters) unless otherwise noted.

TOP VIEW

LAND PATTERN
RECOMMENDATION

NDTES
A. THIS PACKAGE CUNFGRMS TI JEDEC MO-137 VARIATIDN AB
B. PRIMARY DIMENSIUNS IN MILLIMETERS REFERENCE DIMENSIDNS IN INCHES
C. DRAWING CDNFDRMS TD ASME Y14.5M-1994
D. DIMENSIUNS ARE EXCLUSIVE IF BURRS, MILD FLASH, AND TIE BAR EXTRUSIUNS

MQA 1 GAREVB

Figure 9. 16-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0/0150" Wide, Package Number MQA16

Physical Dimensions (Continued)

Dimensions are in inches (millimeters) unless otherwise noted.

Figure 10. 16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide, Package Number MTC16

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

| ACEx $^{T M}$ | FAST $^{\circledR}$ | ISOPLANAR |
| :--- | :--- | :--- | :--- | :--- |

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

